
End Term Report
About Me
 Name : Arafat Dad Khan
 Email : arafat.da.khan@gmail.com
 GitHub : Arafatk
 Blog : medium
 University : Indian Institute of Technology, Kharagpur (link)

Contents

● Overview
● Results
● Conclusion

Overview
My primary goal was to make sure the every function in the Tensorflow C API can
be called properly and that Ruby SWIG works properly with the build of C API.
C/C++ based helper functions are added so that everything works well with Ruby
too. Along with this Ruby protobuf usage was to be shifted to C protobuf for
speed.

This was quite challenging considering that the C API was a lot more convoluted
that originally anticipated. But, thanks to the incredibly smart work of tensorflow
team, almost everything I need to make the protobuf fully functional was available.

The graph api of tensorflow relied completely on Ruby Protocol Buffers gem.
Everything worked fine for small graphs, but for large and convoluted graphs the
programs crashed and the errors were completely indecipherable. Improper graph
specification lead to direct crashes so identifying the mistakes was not possible
when making large graphs.

With time Tensorflow team saw a lot of requests for language bindings and that’s
when they refined the tensorflow C API further and made it completely self

https://github.com/Arafatk
https://medium.com/@Arafat.
http://www.iitkgp.ac.in/
https://github.com/somaticio/tensorflow.rb/blob/master/lib/tensorflow/graph.rb
https://github.com/codekitchen/ruby-protocol-buffers
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/c

reliant(This was one of the goals below the release of Tensorflow 1.0). I emailed
Asim Shankar and Jonathan Hseu from Tensorflow team and they both updated
me with the latest developments and the potential targets for Tensorflow C API.
Google decided to officially support Go, Haskell, Rust and Java (Some of these are
still in progress). And jonathan even gave a talk on Tensorflow dev summit
recently. With the new C compatible API problems such as incorrect specification
while graph construction or improper input specification have been removed and a
massive speed up is observed. Also Tensorflow team has many interesting goals
for Tensorflow 2.0.

Results

I had been worked on using C API only for making graphs and I finally ended up
making a complete protobuf generator with the new C API. Then I completely
removed any unnecessary dependencies. The tests for the previous API relating to
Constants and Placeholders were replicated exactly as before along with addition
of new tests for new functionality.

Removing the dependencies on Ruby-protocol buffers and narray lead to a
massive speed up and the overall testing time changed from 5-6 seconds to
0.4-0.8 seconds seconds even with the addition of a few different tests. The
previous inception model took 10+ seconds to run but this one works in 1-1.5
seconds.

The only drawback is that tensorflow variables class was dropped because the
current API operation construction with TF_FinishOperation using current C API is
different from making operations by using Ruby Protocol buffers and defining
names and attributes manually and that is why they can’t work together.

The graph import and export facility is now over simplified and this helps to easily
identify the mistakes in graph construction. You can see a simple file that works
well and also generates a protobuf file(This is converted using file) with the current
gem. Similarly, I have completely shifted the graph class to rely only on C API and
deleted the original helper files(for ruby protobuf) and so it's easy to make graph
and then finally check them in human readable form after conversion.

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/go
https://github.com/tensorflow/haskell
https://github.com/tensorflow/rust
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/java
https://www.youtube.com/watch?v=yALzr4A2AzY
https://www.tensorflow.org/programmers_guide/variables
https://gist.github.com/Arafatk/d6b5f7265dc02ceb2b38484965806eb1
https://gist.github.com/Arafatk/5da01a611c28b42716346f85ae7db4ae
https://github.com/somaticio/tensorflow.rb/blob/master/converter.py

The session API has also been restructured to work fine well with TF_Operation
instead of taking output names as parameters like previously and this is much
safer as errors are very unlikely in this format. Scope class has been introduced for
simplifying graph construction and status class has been introduced for easier
error checking. Also eventually tensorflow will move to saved model for storing
models which is even better than protobuf and I have added Saved Model
functionality too to deal with that. I also faced some issues with the String data
type encoding before but thanks to Asim Shankar, he pointed me in the right
direction and I was was able to work with it.

All of my work can be seen in this pull request. I have done Automated testing with
Circle CI and the tests are failing currently because it uses the docker image for
tensorflow source and that needs to be updated. I will also email other developers
about the progress to get some comments from them and merge finally when
docker image is updated. I also hope to get comments from users to improve upon
my design decisions.

Tensorboard

I had originally anticipated adding tensorboard usage to be an extremely
convoluted process but it turned out to be much simpler than I had anticipated. I
have mentioned the entire process of using Tensorboard with Ruby in a markdown
file and this can easily be used for more complicated examples too.

Now you can use the tensor board that helps us properly visualise Ruby graphs too

https://github.com/somaticio/tensorflow.rb/pull/81
https://github.com/Arafatk/tensorflow.rb/blob/master/tensorboard.md
https://github.com/Arafatk/tensorflow.rb/blob/master/tensorboard.md

This photo above is a screenshot that I took after running the graph of the file in
tensorboard. In simple cases like these the use of tensorboard seems very
redundant, but it is very useful when dealing with very large graphs like the ones
for inception model

Its very easy to use tensorboard and visualize what you have done.

Conclusion
I have completed the specified work for the tensorflow.rb and almost everything
that I had targetted has been working fine. I have made the report very brief but
any clarifications or any suggestions for improvement are very welcome.

Finally, I feel very grateful to Ruby community, my project mentors and many
people who have given me extremely valuable recommendations to improve upon
my work.

