
Ruby Grant 2018 Mentor report
“Enhancing Ruby’s concurrency tooling”

Developer: Petr Chalupa
Mentor: Koichi Sasada (Cookpad Inc.)

1. Project Evaluation
Concurrency is one of the most important topic Ruby should support more. Petr is a lead
maintainer of concurrent ruby maintainer and his contribution was huge for Ruby’s concurrent
support, especially on the parallel threading Ruby interpreters such as JRuby and so on.
He achieved the following development topics.

Throttle
A utility to manage concurrency level of tasks. The following example is quoted from the
document.

Limiting concurrency level of a concurrently executed block to two
max_two = Concurrent::Throttle.new 2

=> #<Concurrent::Throttle:0x000002 capacity available 2 of 2>

used to track concurrency level

concurrency_level = Concurrent::AtomicFixnum.new

=> #<Concurrent::AtomicFixnum:0x000003 value:0>

job = -> do

 # increase the current level at the beginning of the throttled block

 concurrency_level.increment

 # work, takes some time

 do_stuff

 # read the current concurrency level

 current_concurrency_level = concurrency_level.value

 # decrement the concurrency level back at the end of the block

 concurrency_level.decrement

 # return the observed concurrency level

 current_concurrency_level

end

create 10 threads running concurrently the jobs

Array.new(10) do

 Thread.new do

 max_two.acquire(&job)

 end

wait for all the threads to finish and read the observed

concurrency level in each of them

end.map(&:value) # => [2, 2, 1, 1, 1, 2, 2, 2, 2, 1]

Cancellation
A tool to provide cooperative cancellation between concurrent entities. Ruby has several
features to interrupt other threads, however they are not safe (or difficult to use safely).
“Cancelleation” provide cooperative way to introduce cancellation points. The following example
is quoted from the document.

Create cancellation and then run work in a background thread until it is

cancelled.

cancellation, origin = Concurrent::Cancellation.new

=> #<Concurrent::Cancellation:0x000002 pending>

- origin is used for cancelling, resolve it to cancel

- cancellation is passed down to tasks for cooperative cancellation

async_task = Concurrent::Promises.future(cancellation) do |cancellation|

 # Do work repeatedly until it is cancelled

 do_stuff until cancellation.canceled?

 :stopped_gracefully

end

=> #<Concurrent::Promises::Future:0x000003 pending>

sleep 0.01 # => 0

Wait a bit then stop the thread by resolving the origin of the

cancellation

origin.resolve

=> #<Concurrent::Promises::ResolvableEvent:0x000004 resolved>

async_task.value! # => :stopped_gracefully

Channel
FIFO communication channel like Go-language’s channels. The followings are quoted from the
documents.

Let's start by creating a channel with a capacity of 2 messages.

ch = Concurrent::Promises::Channel.new 2

=> #<Concurrent::Promises::Channel:0x000002 capacity taken 0 of 2>

We push 3 messages, then it can be observed that the last

thread pushing is sleeping since the channel is full.

threads = Array.new(3) { |i| Thread.new { ch.push message: i } }

sleep 0.01 # let the threads run

threads

=> [#<Thread:0x000003@channel.in.md:14 dead>,

#<Thread:0x000004@channel.in.md:14 dead>,

#<Thread:0x000005@channel.in.md:14 sleep_forever>]

Erlang Actors
Actor implementation based on Erlang semantics. The following feature is same as Erlang
Actors (quoted from his final report).

● exit behavior (called termination in Ruby to avoid collision with Kernel#exit),
● ability to link and monitor actors,
● ability to have much more actors then threads,
● ordering guarantees between messages and signals,
● message receiving features.

The following example is quoted from documents.

The simplest example is to use the actor as an asynchronous execution.

Although, Promises.future { 1 + 1 } is better suited for that purpose.

actor = Concurrent::ErlangActor.spawn(type: :on_thread, name: 'addition') { 1

+ 1 }

=> #<Concurrent::ErlangActor::Pid:0x000002 addition terminated normally

with 2>

actor.terminated.value! # => 2

Let's send some messages and maintain some internal state which

is what actors are good for.

actor = Concurrent::ErlangActor.spawn(type: :on_thread, name: 'sum') do

 sum = 0 # internal state

 # receive and sum the messages until the actor gets :done

 while true

 message = receive

 break if message == :done

 # if the message is asked and not only told,

 # reply with the current sum (has no effect if actor was not asked)

 reply sum += message

 end

 # The final value of the actor

 sum

end

=> #<Concurrent::ErlangActor::Pid:0x000003 sum running>

Integration
Not only introduce new concurrent utilities, but he also introduce integration mechanism
between them. The following example is quoted from the document and it uses Throttle,
ErlangActor and Prommises.

throttle = Concurrent::Throttle.new 10

1000.times do

 Thread.new do

 actor = Concurrent::ErlangActor.spawn_actor type: :on_pool,

 executor: throttle.on(:io) do

 receive(keep: true) { |m| reply m }

 end

 actor.ask :ping

 Concurrent::Promises.future_on(throttle.on(:fast)) { 1 + 1 }.then(&:succ)

 end

end

Documents
He also wrote careful documents which help user to introduce concurrent-ruby to their projects.

Overall evaluation
As described above, he achieved great development of the software and wrote excellent
document. I believe this grant project has great success.

His intermediate report and final report is here:
https://github.com/ruby-concurrency/concurrent-ruby/blob/ruby-association/docs-source/ruby-as
sociation-intermediate-report.md
https://github.com/ruby-concurrency/concurrent-ruby/blob/ruby-association/docs-source/ruby-as
sociation-final-report.md

2. Mentor’s position
I reviewed his report and discuss some topics. Also we discussed Guild, another concurrent
entity at RubyKaigi 2019.

https://github.com/ruby-concurrency/concurrent-ruby/blob/ruby-association/docs-source/ruby-association-intermediate-report.md
https://github.com/ruby-concurrency/concurrent-ruby/blob/ruby-association/docs-source/ruby-association-intermediate-report.md
https://github.com/ruby-concurrency/concurrent-ruby/blob/ruby-association/docs-source/ruby-association-final-report.md
https://github.com/ruby-concurrency/concurrent-ruby/blob/ruby-association/docs-source/ruby-association-final-report.md

3. Future prospects
In his proposal, there are other concurrent abstraction and it is not started yet. I hope
concurrent-ruby will be extended with these ideas and become good de-fact standard library for
Ruby’s threading programs.

