
Win32Utils Support

Daniel Berger

== Win32Utils Overview

The Win32Utils Project provides a series of Ruby libraries that are designed specifically 

for the Windows operating system to make life easier and more enjoyable for Ruby 

programmers on MS Windows. These libraries provide interfaces to various parts of the

Windows OS, and extend the Ruby core classes so that they're better suited for 

Windows.

The goal of this project was to continue the transition of several of the existing libraries 

from Win32API library to FFI or OLE in order to make the code more robust and 

compatible with other implementations, such as JRuby.

== win32-file-stat

gem: win32-file-stat

url: https://github.com/djberg96/win32-file-stat

The win32-file-stat library has been fully converted to FFI, with several new methods 

added from the previous version. This includes analogues for the #ino, #gid, #grpowned, 

#owned?, #rdev and #uid methods. All tests pass with both MRI and JRuby. The gem 

was released on December 16th, 2013.

Issues: In the process of testing this with JRuby, two bugs were discovered. First, JRuby 

returns incorrect values for the address of unsigned integers. This mainly affected the 

INVALID_HANDLE_VALUE constant, which resulted in false positives for certain 

function. Second, JRuby deviated from MRI by returning numeric values instead of nil 

for the File::Stat members #dev_major, #dev_minor, #rdev_major and #rdev_minor. 

Both issues have been reported.

== win32-file

gem: win32-file



url: https://github.com/djberg96/win32-file

The win32-file library has been fully converted to FFI. Most of the custom methods were 

removed, having been moved into separate gems like win32-file-attributes or 

win32-file-security. The File.long_path and File.short_path methods remain, however, 

as do the overridden methods. Several new methods were overridden in this release, 

owing to the changes in win32-file-stat. These include 

the .group_owned?, .readable?, .owned? and .writable? singleton methods. In addition 

the .realpath and .realdirpath methods have been overridden to handle symlinks. The 

gem was released December 16th, 2013.

Issues: I had to handle in-out string arguments differently than I had originally 

planned. Internally certain Windows functions modify the input argument by adding a 

null byte at a specific index. However, JRuby doesn't work that way. Instead, I used 

string pointers (instead of a string buffer) and then read bytes from the pointer as 

needed. This worked for both MRI and JRuby. It's a safer approach for other possible 

implementations as well.

I did find one bug on JRuby. Specifically, it was unable to delete a dangling symlink on 

Windows, raising an Errno::ENOENT instead. This issue has been reported.

== win32-eventlog

gem: win32-eventlog

url: https://github.com/djberg96/win32-eventlog

The win32-eventlog library has been fully converted to FFI with the original API intact. 

One bug (a potentially undersized buffer) was corrected along the way. The gem was 

released on January 13th, 2014.

Issues: My original plans to use OLE and/or a mix of FFI and OLE were dropped 

because it's not possible to create an event source, nor write to it, using the OLE/WMI 

interface that Microsoft provides. Consequently, I decided it was easier to simply use 

FFI throughout the entire codebase.

Another issue that came up was JRuby's heap size. JRuby users will probably need to 



increase the heap size to use the win32-eventlog library properly.

== win32-clipboard

gem: win32-clipboard

url: https://github.com/djberg96/win32-clipboard

The win32-clipboard library has been fully converted to FFI. The original API has been 

kept intact, with a couple enhancements along the way. First, the ability to write 

bitmap data to the clipboard has been added thanks to a patch from Tadashi Kba. 

Second, the ability to copy and retrieve raw html data was added by Park Heesob's 

HtmlClipboard class. Two methods that wrap HtmlClipboard, get_html_data and 

set_html_data, were conseqently added to the core Clipboard class. The win32-clipboard 

gem was released on January 12th, 2014.

In other news, I decided to drop support for Ruby 1.8. I also dropped support for 

Windows XP since Microsoft will end its support in April 2014.

Issues: Shortly after the first release I realized there was a bug with certain functions 

that were only exported on 64-bit platforms. I consequently updated the code to work for 

both 32-bit and 64-bit platforms, and pushed out an updated release on January 20th, 

2014. There still were some issues with change notifications and another release was 

pushed out on 7-Feb-2014.

== win32-taskscheduler

gem: win32-taskscheduler

url: https://github.com/djberg96/win32-taskscheduler

The win32-taskscheduler library has been fully converted to use OLE. The original APi 

was mostly kept intact, though additional arguments were added to the constructor. 

These arguments allow the user to specify a folder to look in, and whether or not to 

create the folder if it doesn't exist. By default the root folder is used (where tasks are 

kept on the system) and new folders are not created.

Issues: Certain methods are no longer necessary, such as TaskScheduler#save. Rather 



than remove them I have made them deprecated methods for now. They will be removed 

in the next major release. In some cases, changes made to an existing task are not 

applied immediately, and the user must re-activate the task to ensure the changes are 

applied. On JRuby I did notice that it raised a native exception in one place instead of a 

Ruby exception, but this should not have any real affect in practice.

== win32-changejournal

gem: win32-dirmonitor

url: https://github.com/djberg96/win32-dirmonitor

I decided that porting the win32-changejournal library was both unnecessary and too 

difficult. Instead, I created a new library called win32-dirmonitor that accomplishes the 

same functionality, but uses OLE instead of FFI. The API is very similar, though the 

struct used to hold file changes did have some member changes, so new users will need 

to update their code.

Issues: The win32-dirmonitor library does not currently monitor files in subdirectories, 

only the files in the specified directory. I plan to allow this option if possible.

== win32-job

gem: win32-job

url: https://github.com/djberg96/win32-job

This is a new library written using FFI. It provides an API for "jobs" on Windows, which 

is how Windows manages process groups. Although there is some minor duplication of 

functionality with win32-process, this library provides much more granular 

configuration of process groups if the user so chooses. It also provides the ability to 

gather account or limit information on jobs, kill jobs, and wait for all processes in a job 

to complete.

Issues: No serious issues. Some enhancements and changes were made after the initial 

release. The current release is 0.1.2, released on 7-Feb-2014.

== win32-api



gem: win32-api

url: https://github.com/djberg96/win32-api

One potential initialization bug was patched courtesy of Kevin Huene and version 1.5.1 

was pushed on 14-Feb-2014.

Although deprecated there are some people (notably Puppet) that still rely on it, so I 

continue to support it for now.

BONUS ACCOMPLISHMENTS

== file-find

gem: file-find

url: https://github.com/djberg96/file-find

As a side effect of converting the sys-admin gem to use FFI, I was able to add support 

for the :uid, :gid and :inum options for the file-find gem. I also fixed support (however 

limited) for the :perm option on Windows. Version 0.3.8 of the file-find gem was released 

on 12-Feb-2014.

== file-temp

gem: file-temp

url: https://github.com/djberg96/file-temp

For the file-temp gem I cleaned up and simplified the source code for both MS Windows 

and Unix systems, and included separate source code for JRuby. Version 1.2.1 of the 

file-temp gem was released on 17-Feb-2014.

CONCLUSION

All goals were met, and some additional work above and beyond was completed. The 

project was a success.



== Lessons Learned

Although I'm an old hand at FFI by this point, there were some lessons learned and 

some experiences that I can pass along.

=== Compatibility with JRuby

Although using FFI usually means compatibility with JRuby, there were a few snags 

that had to be overcome.

One issue that came up was casting negative values. For example, the constant 

INVALID_HANDLE_VALUE is defined as (DWORD)-1 in the windows.h header file. 

This translates to 0xFFFFFFFF on 32-bit platforms and 0xFFFFFFFFFFFFFFFF on 

64-bit platforms. With that in mind we originally defined it like so:

INVALID_HANDLE_VALUE = FFI::Pointer.new(-1).address

However, it turns out that JRuby does not cast negative integers in a way we would 

expect, as per https://github.com/jruby/jruby/issues/1315. So, we ended up using this 

approach instead:

INVALID_HANDLE_VALUE = (1<<FFI::Platform::ADDRESS_SIZE)-1

This returns the expected value for both MRI and JRuby.

Another issue that came up was string handling. There are a couple different ways you 

can deal with strings and function prototypes in FFI. One is to use string buffers, e.g. 

buffer_in or buffer_out. Another is to use pointers. I found that it was generally better to 

use pointers because by using pointers you could read a specific length from the FFI 

pointer, as needed, and often the exact length you needed was known. With string 

buffers, we often found ourselves manually parsing out null characters, which was 

susceptible to errors.

== 32-bit vs 64-bit Issues

In one instance we needed to specifically define different functions depending on 



whether or not we were using a 32-bit or 64-bit version of Ruby. This came up with the 

GetWindowLong and GetWindowLongPtr functions for the win32-clipboard gem. We 

handled it by assuming a 32-bit version, and defaulting to the 64-bit version if the 32-bit 

function definition failed.

== Overall Productivity and Maintainability

Despite a few quirks with JRuby, overall I found FFI to be a fantastic library for 

interfacing with C libraries on Windows. Although it does require some additional 

up-front work, such as manually defining structs and constants from header files, the 

payoff is worth it. The structs are effectively self-documenting and constants, once 

defined, are familiar to people coming from a Windows API background.

Using FFI let me leverage Ruby constructs that make coding much easier than if I were 

writing C code. For example, using the begin/rescue/ensure paradigm, I can make sure 

an open handle is closed no matter where an error occurs within that block. If I were 

using C code I would have to explicitly close that handle if any function in between 

failed. I've also found that retry works as an excellent way to reallocate memory as 

needed.

Lastly, I'll say that FFI makes the code highly maintainable. Not only is it easy to read, 

it's easy to modify. Even people who are not necessarily C programmers can easily read 

the code base, spot bugs, and even provide patches in simple cases. I receive far more 

merge requests using FFI than I ever did when I was using C code.


