
Ruby Association Grant 2019 Final
Report

Author: Alish Dipani
Email: alishdipani@gmail.com
Github: alishdipani

Contents

Overview
Code
Installation
Usage
Results
Conclusion
More resources
Future Work
Acknowledgements

Overview

Rubyplot is a plotting library for Ruby inspired from the library Matplotlib for Python. The aim of
creating such a library is to create a platform-independent data visualisation library to be used
with Ruby for scientific computing and web development. For this library to have ruby-like
behaviour, the front-end is back-end agnostic while having multiple back-ends. The advantage of
such an architecture is that it enforces ruby-like behaviour rather than backend-like behaviour
while being compatible with multiple platforms.

Currently, Rubyplot supports two back-ends: GR and ImageMagick

The main objectives for Rubyplot are:

1. Provide a large variety of good looking plots which can be used for real-world applications.
2. Be compatible with multiple backends.
3. Provide Image loading, saving and Manipulation functionality for Machine Learning

applications.
4. Support different types of arrays for Data visualisation and Machine Learning applications.

Code

Main Repository : https://github.com/SciRuby/rubyplot
My Repository : https://github.com/alishdipani/rubyplot

Installation

Rubyplot is still in development, and hence the installation has to be done through source.

Install rmagick and GR from here
Create a symbolic link for GR:

af://n220
mailto:alishdipani@gmail.com
https://github.com/alishdipani
af://n288
af://n308
https://gr-framework.org/
https://imagemagick.org/index.php
af://n321
https://github.com/SciRuby/rubyplot
https://github.com/alishdipani/rubyplot
af://n323
https://github.com/rmagick/rmagick
https://gr-framework.org/c.html

GR is usually installed in '/usr/gr/'.

Clone and install rubyplot:

Set environment variables before using:

These can also be added to .bashrc to avoid declaring them each time.

Usage

Rubyplot is a library with which a user can visualise data easily with just a few lines of code while
having full control over every aspect of the plot. Images can also be loaded and manipulated
easily with just a few lines of code.

Plotting

Any plot in Rubyplot can be created in 4 easy steps:

1. Importing Rubyplot and set up important properties for Rubyplot, i.e. backend, inline show,
etc.

2. Create a Figure(i.e. Canvas) on which the graphs will be plotted
3. Choose the types of graphs and set their properties like data, title, colour, etc.
4. Display the graph or save the Figure

An example of Rubyplot is :

sudo ln -s <GR path> /usr/local/gr

git clone https://github.com/SciRuby/rubyplot
cd rubyplot
rake compile
gem build rubyplot.gemspec
gem install ./rubyplot-0.1.pre.a1.gem

export GRDIR="/usr/local/gr"
export GKS_FONTPATH="/usr/local/gr"
Set Backend, for gr use "GR" and for magick use "MAGICK"
export RUBYPLOT_BACKEND="MAGICK"

require 'rubyplot'
Rubyplot.set_backend :magick

figure = Rubyplot::Figure.new(width: 30, height: 30)

axes00 = figure.add_subplot! 0,0
axes00.plot! do |p|
 d = (0..360).step(5).to_a
 p.data d, d.map { |a| Math.sin(a * Math::PI / 180) }
 p.fmt = 'ok-'
 p.marker_fill_color = :white
 p.marker_size = 0.5
 p.line_width = 2
 p.label = "sine"
end

af://n341
af://n343

The output of the code is:

Tutorial for Rubyplot plotting can be found here

Image

Any Image can be loaded, manipulated and saved in just a few steps, for example, steps for
manipulating an image would be:

1. Rubyplot is imported, the image is read and stored in a Rubyplot::Image object.
2. Pixels are exported from the image.
3. Manipulating the pixels.
4. A new Rubyplot::Image object is created with specified rows and columns.
5. Manipulated pixels are imported to the Rubyplot::Image object.
6. Show the new image.

axes00.title = "A plot function example"
axes00.square_axes = false

figure.write('example1.png')

https://nbviewer.jupyter.org/github/alishdipani/rubyplot/blob/master/tutorial/magick/Rubyplot_Tutorial%28Magick%29.ipynb
af://n358

require 'rubyplot' # Import rubyplot
require 'numo/narray' # Importing Numo narray for manipulation

img = Rubyplot::Image.new # Creating a new Image Object
img.imread('paris.jpeg') # Reading an image
img.imshow # Showing the Image

img_pix = img.export_pixels # Exporting pixels from img, map is set as RGB as
the image is RGB
img_pix_narray = Numo::DFloat.cast(img_pix) # Casting exported pixel array as a
Numo::DFloat array

Manipulating Numo array
img_pix_narray_new = Numo::DFloat.cast(img_pix_narray>(Rubyplot.QuantumRange/3))
* Rubyplot.QuantumRange
Choosing pixels which have more intensity than Rubyplot.QuantumRange/3 for
each channel
Intensity of a pixel ranges from 0 to Rubyplot.QuantumRange

img_copy = Rubyplot::Image.new(img.columns,img.rows) # Creating an Image to copy
img with number of columns and rows exported
img_copy.import_pixels(img_pix_narray_new) # Importing pixels extracted from img

img_copy.imshow # Showing the copied image
img_copy.imwrite("paris_copy.jpg") # Image can be written with any format

Tutorial for Rubyplot Image can be found here

Results

This work has been done to improve Magick backend and general architecture.

Minor Improvements

Improvements in Appearance (Fixed Bugs)
Added opacity to area plot
Added width and color options to error bar plot
Added median width to box plot
Improvements in ticks
Improvements in legends

https://github.com/alishdipani/rubyplot/blob/master/tutorial/magick/Image/Rubyplot_Image_Tutorial(Magick).ipynb
af://n378
af://n380

Major Improvements & New Features

Added Documentation

Improved tests

Every property of every plot is tested
Added image viewing option to tests

Added Image class:

Rubyplot can now load, show and write images
Images can be converted into other formats
Pixels can be extracted from images
Images can be created by providing values for each map (R = red, G = green, B = blue, A
= alpha, C = cyan, Y = yellow, M = magenta, K = black, or I = intensity (for grayscale))
Added a tutorial for Image class
Pixels can be given as a Ruby Array or Numo array
Images also support inline plotting in IRuby notebooks

Added Support for Numo array

Data can be provided as Numo arrays to Rubyplot
Pixels can be provided as a Numo Array to Rubyplot

Image Examples

1. Copying a grayscale image

2. Copying a part of an RGB image

require 'rubyplot' # Import rubyplot

img0 = Rubyplot::Image.new # Creating a new Image Object
img0.imread('mnist0.jpg') # Reading a MNIST Image
img0.imshow # Showing the Image

img0_pix = img0.export_pixels("I") # Exporting pixels from img0, map is set as
intensity(I) as the image is grayscale

img0_copy = Rubyplot::Image.new(img0.columns,img0.rows) # Creating an Image to
copy img0 with same number of columns and rows
img0_copy.import_pixels(img0_pix,"I") # Importing pixels extracted from img0

img0_copy.imshow # Showing the copied image
img0_copy.imwrite("mnist0_copy.jpg") # Image can be written with any format

require 'rubyplot' # Import Rubyplot

img1 = Rubyplot::Image.new # Creating a new Image Object
img1.imread('cat.jpg') # Reading an image of a cat
img1.imshow # Showing the Image

af://n394
af://n429
af://n430
af://n435

img1_pix = img1.export_pixels("RGB",900,50,800,750) # Exporting pixels from
img1, map is set as RGB as the image is RGB
800x750 pixels are exported from the position (900,50) i.e. offset is (900,50)

img1_copy = Rubyplot::Image.new(800,750) # Creating an Image to copy img1 with
number of columns and rows exported
img1_copy.import_pixels(img1_pix) # Importing pixels extracted from img1

img1_copy.imshow # Showing the copied image
img1_copy.imwrite("cat_copy.jpg") # Image can be written with any format

3. Changing channels of an image

require 'rubyplot' # Import Rubyplot

img2 = Rubyplot::Image.new # Creating a new Image Object
img2.imread('rgb.png') # Reading an image
img2.imshow # Showing the Image

img2_pix_gbr = img2.export_pixels # Exporting pixels from img2, map is set as
RGB as the image is RGB

img2_copy_gbr = Rubyplot::Image.new(img2.columns,img2.rows) # Creating an Image
to copy img2 with same number of columns and rows
img2_copy_gbr.import_pixels(img2_pix_gbr, "GBR") # Importing pixels extracted
from img2 in the order GBR
Since RGB is imported in order GBR; Red becomes Green, Green Becomes Blue and
Blue becomes Red
i.e. RGB -> GBR

img2_copy_gbr.imshow # Showing the copied image
img2_copy_gbr.imwrite("gbr.png") # Image can be written with any format

af://n440

Conclusion

Major deliverables have been completed, and Rubyplot can now be used for various applications.
XND array support, adding more plots and some minor improvements have been postponed for
later. This is a very brief report, but any clarifications or any suggestions for improvement are
always very welcome.

More resources

GSoC 2018

GSoC 2018 project GRRuby by Pranav Garg can be found here
GSoC 2018 project Ruby Matplotlib by Arafat Dad Khan can be found here
A talk on Rubyplot by Pranav Garg in RubyConf 2018 can be found here

GSoC 2019

Daily updates can be found here

Proposal can be found here

Tutorial notebook can be found here and can be viewed online(rendered) here

Rubyplot Github Repository can be found here

All my work can be found in these PRs: PR#45 and PR#52

Other blogs can be found here:

1. GSoC 2019 project introduction
2. Rubyplot installation guide
3. The Scatter plot example
4. Simple Plots in Rubyplot
5. Multi plots in Rubyplot
6. The show and the plot functions

af://n445
af://n447
af://n448
https://github.com/pgtgrly/GRruby-extension
https://github.com/Arafatk/magick-rubyplot
https://youtu.be/7QBkckZ1aNQ
af://n456
https://discourse.ruby-data.org/t/gsoc-2019-project-rubyplot-discussion/57
https://github.com/alishdipani/rubyplot/wiki/GSoC-2019-Proposal
https://github.com/alishdipani/rubyplot/blob/master/tutorial/magick/Rubyplot_Tutorial(Magick).ipynb
https://nbviewer.jupyter.org/github/alishdipani/rubyplot/blob/master/tutorial/magick/Rubyplot_Tutorial%28Magick%29.ipynb
https://github.com/SciRuby/rubyplot
https://github.com/SciRuby/rubyplot/pull/45
https://github.com/SciRuby/rubyplot/pull/52
https://alishdipani.github.io/gsoc2019/2019/06/08/GSoC-2019-project-introduction/
https://alishdipani.github.io/gsoc2019/2019/06/09/Rubyplot-installation-guide/
https://alishdipani.github.io/gsoc2019/2019/06/10/The-Scatter-plot-example/
https://alishdipani.github.io/gsoc2019/2019/06/28/Simple-Plots-in-Rubyplot/
https://alishdipani.github.io/gsoc2019/2019/07/13/Multi-plots-in-Rubyplot/
https://alishdipani.github.io/gsoc2019/2019/07/26/The-show-and-the-plot-functions/

7. IRuby integration and ticks

Ruby Grant 2019

Proposal : Link
Pull Request : PR#56
Rubyplot Image tutorial : Link

Future Work

Adding Image functionality for GR backend
Adding Image processing functionality
Adding support for interactive plotting
Adding support for 3D plots

Acknowledgements

I would like to thank my mentor Kenta Murata for his mentorship during the project.
I am very thankful to the Ruby Association for funding the development of this project.
I would also like to thank Sameer Deshmukh and the SciRuby community for their support and
guidance.

https://alishdipani.github.io/gsoc2019/2019/08/22/IRuby-integration-and-ticks/
af://n485
https://github.com/alishdipani/rubyplot/wiki/Ruby-Grant-2019-Proposal
https://github.com/SciRuby/rubyplot/pull/56
https://github.com/alishdipani/rubyplot/blob/master/tutorial/magick/Image/Rubyplot_Image_Tutorial(Magick).ipynb
af://n493
af://n503

	Ruby Association Grant 2019 Final Report
	Contents
	Overview
	Code
	Installation
	Usage
	Plotting
	Image

	Results
	Minor Improvements
	Major Improvements & New Features
	Image Examples
	1. Copying a grayscale image
	2. Copying a part of an RGB image
	3. Changing channels of an image

	Conclusion
	More resources
	GSoC 2018
	GSoC 2019
	Ruby Grant 2019

	Future Work
	Acknowledgements

