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OverviewOverview

NumRuby is the re-implementation of popular dense matrix library NMatrix. It is re-implemented with primary focus being performance and scalability. It has shown
upto 100x speedup for the fundamental functionalities such as elementwise operations. This project aims at adding Views support to the NumRuby library. Views are
used to have multi-dimensional data structures exchange data without creating copies which saves a lot of memory and execution time.

Sparse matrices are an important part of scientific computing. Many popular modern languages like Python, Julia and R (some even have this as part of their standard
libraries) have sparse matrices support while Ruby doesn't have a good library for sparse. Ruby-Sparse library is aimed to build an efficient and feature-rich end-user
intended Sparse matrix library in Ruby with interfaces to popular dense matrix libraries (like Numo-Narray, NumRuby[NMatrix]) with linear algebra support.

CodeCode

https://github.com/sciruby/ruby-sparse

https://github.com/sciruby/numruby

InstallationInstallation

Ruby-SparseRuby-Sparse

Build libraryBuild library

git clone https://github.com/sciruby/ruby-sparse

cd ruby-sparse/

gem install bundler

bundle install

rake compile

Try codeTry code

rake pry

NumRubyNumRuby

Dependencies installation (Debian/Ubuntu)Dependencies installation (Debian/Ubuntu)

sudo apt-get install libopenblas-dev

sudo apt-get install liblapack-dev

sudo apt-get install liblapacke-dev

Dependencies installation (Mac OSX)Dependencies installation (Mac OSX)

brew install openblas

brew install lapack

Build libraryBuild library

https://github.com/sciruby/numruby
https://github.com/sciruby/nmatrix
https://github.com/sciruby/ruby-sparse
https://github.com/sciruby/ruby-sparse
https://github.com/sciruby/numruby


git clone https://github.com/sciruby/numruby

cd numruby/

gem install bundler

bundle install

rake compile

Try codeTry code

rake pry

Code and Usage OverviewCode and Usage Overview

Ruby-Sparse workRuby-Sparse work

COO implementation overviewCOO implementation overview

typedef struct COO_STRUCT

{

  sp_dtype dtype;

  size_t ndims;

  size_t count;     //count of non-zero elements

  size_t* shape;

  double* elements; //elements array

  size_t* ia;       //row index

  size_t* ja;       //col index

}coo_matrix;

[1] pry(main)> n = RubySparse::COO.new [3, 3], [1, 2, 3], [0, 1, 2], [0, 1, 2]

=> "#<RubySparse::COO:0x0000562297c65f88; shape: [3,3]; dtype: sp_float64; nnz: 3>"

[2] pry(main)> n.elements

=> [1.0, 2.0, 3.0]

[3] pry(main)> n.coords

=> [[0, 1, 2], [0, 1, 2]]

[4] pry(main)> n.shape

=> [3, 3]

CSR implementation overviewCSR implementation overview

typedef struct CSR_STRUCT

{

  sp_dtype dtype;

  size_t ndims;

  size_t count;     //count of non-zero elements

  size_t* shape;

  double* elements; //elements array

  size_t* ip;       //row pointer vals

  size_t* ja;       //col index

}csr_matrix;

CSR sparse representation compresses the row index array which leads to reduction in amount of data stored for large enough matrices. In this implementation,
elements  array represents the data values of the sparse matrix which is all the non-zero values in the sparse matrix. ip  represents the compressed row array

values which is the cumulative sum of number of elements in each row till the given row. ja  represents the column index values.



[1] pry(main)> M = RubySparse::CSR.new [3, 3], [3, 2, 5], [0, 1, 2], [0, 1, 2]

=> "#<RubySparse::CSR:0x000055abb9f26718; shape: [3,3]; dtype: sp_float64; nnz: 3>"

[2] pry(main)> M.elements

=> [3.0, 2.0, 5.0]

[3] pry(main)> M.indptr

=> [0, 1, 2, 3]

[4] pry(main)> M.indices

=> [0, 1, 2]

[5] pry(main)> M.shape

=> [3, 3]

[6] pry(main)> M.dtype

=> :sp_float64

CSC implementation overviewCSC implementation overview

typedef struct CSC_STRUCT

{

  sp_dtype dtype;

  size_t ndims;

  size_t count;     //count of non-zero elements

  size_t* shape;

  double* elements; //elements array

  size_t* ia;       //row index

  size_t* jp;       //col pointer vals

}csc_matrix;

CSC sparse representation compresses the column index array which leads to reduction in amount of data stored for large enough matrices. In this implementation,
elements  array represents the data values of the sparse matrix which is all the non-zero values in the sparse matrix. jp  represents the compressed column array

values which is the cumulative sum of number of elements in each column till the given column. ia  represents the row index values.

[1] pry(main)> M = RubySparse::CSC.new [3, 3], [3, 2, 5], [0, 1, 2], [0, 1, 2]

=> "#<RubySparse::CSC:0x000055b9d6dadf78; shape: [3,3]; dtype: sp_float64; nnz: 3>"

[2] pry(main)> M.elements

=> [3.0, 2.0, 5.0]

[3] pry(main)> M.indptr

=> [0, 1, 2, 3]

[4] pry(main)> M.indices

=> [0, 1, 2]

[5] pry(main)> M.dtype

=> :sp_float64

DIA implementation overviewDIA implementation overview

typedef struct DIA_STRUCT

{

  sp_dtype dtype;

  size_t ndims;

  size_t count;     //count of diagonal elements

  size_t* shape;

  double* elements; //elements array

}dia_matrix;

DIA sparse representation is used only for those sparse matrices that have non-zero elements only along the diagonal of the matrix. elements  stores the non-zero
values of the matrix along the diagonal. There is no need for index values if all the diagonal values are provided and in the order in which they appear in increasing
order of row/column index.



[1] pry(main)> n = RubySparse::DIA.new [3, 3], [1, 0, 3]

=> #<RubySparse::DIA:0x2b06a3ecf69c>

[2] pry(main)> n.elements

=> [1.0, 0.0, 3.0]

[3] pry(main)> n.shape

=> [3, 3]

[4] pry(main)> n.dim

=> 2

[5] pry(main)> n.dtype

=> :sp_float64

NMatrix to/from Sparse conversionNMatrix to/from Sparse conversion

def self.from_nmatrix(nmat)

  nm_elements = nmat.elements

  nm_shape = nmat.shape

  if nmat.dim != 2

    raise StandardError.new "NMatrix must be of 2 dimensions."

  end

  csr_elements = []

  csr_ia = []

  csr_ja = []

  for i in (0...nmat.shape[0])

    for j in (0...nmat.shape[1])

      nm_index = (nmat.shape[1] * i) + j

      nm_value = nm_elements[nm_index]

      if nm_value == 0

        next

      end

      csr_elements.append(nm_value)

      csr_ia.append(i)

      csr_ja.append(j)

    end

  end

  csr_mat = self.new nm_shape, csr_elements, csr_ia, csr_ja

  return csr_mat

end

def to_nmatrix

  ip = self.indptr

  ja = self.indices

  nm_elements = Array.new(self.shape[0]*self.shape[1], 0)

  for i in (0...self.shape[0])

    for j in (ip[i]...ip[i + 1])

      nm_index = (self.shape[1] * i) + ja[j]

      nm_elements[nm_index] = self.elements[j]

    end

  end

  m = NMatrix.new self.shape, nm_elements

  return m

end

Above are the NMatrix/CSR sparse matrix conversion methods. Similarly, the conversion with NMatrix for other sparse implementations (COO, CSC, DIA) have also
been implemented and can be found in the pull requests provided below.

Elementwise operatorsElementwise operators



[1] pry(main)> n = RubySparse::COO.new [3, 3], [1, 2, 3], [0, 1, 2], [0, 1, 2]

=> "#<RubySparse::COO:0x0000559adcab2878; shape: [3,3]; dtype: sp_float64; nnz: 3>"

[2] pry(main)> m = RubySparse::COO.new [3, 3], [3, 2, 3], [0, 1, 2], [2, 2, 2]

=> "#<RubySparse::COO:0x0000559adcaed608; shape: [3,3]; dtype: sp_float64; nnz: 3>"

[3] pry(main)> x = n + m

=> "#<RubySparse::COO:0x0000559adc69bcf8; shape: [3,3]; dtype: sp_float64; nnz: 5>"

[4] pry(main)> x.class

=> RubySparse::COO

[5] pry(main)> x.elements

=> [1.0, 3.0, 2.0, 2.0, 6.0]

[6] pry(main)> x.coords

=> [[0, 0, 1, 1, 2], [0, 2, 1, 2, 2]]

[7] pry(main)> y = n.sin

=> "#<RubySparse::COO:0x0000559adc6d7a78; shape: [3,3]; dtype: sp_float64; nnz: 3>"

[8] pry(main)> y.class

=> RubySparse::COO

[9] pry(main)> y.elements

=> [0.8414709848078965, 0.9092974268256817, 0.1411200080598672]

[10] pry(main)> y.coords

=> [[0, 1, 2], [0, 1, 2]]

IterationIteration

[1] pry(main)> m = RubySparse::COO.new [3, 3], [3, 2, 3], [0, 1, 2], [2, 2, 2]

=> "#<RubySparse::COO:0x00005642595d9278; shape: [3,3]; dtype: sp_float64; nnz: 3>"

[2] pry(main)> m.each { |e| p e }

3.0

2.0

3.0

=> "#<RubySparse::COO:0x00005642595d9278; shape: [3,3]; dtype: sp_float64; nnz: 3>"

[3] pry(main)> m.each_with_indices { |e| p e }

[3.0, 0, 2]

[2.0, 1, 2]

[3.0, 2, 2]

=> "#<RubySparse::COO:0x00005642595d9278; shape: [3,3]; dtype: sp_float64; nnz: 3>"

[4] pry(main)> M = RubySparse::CSR.new [3, 3], [3, 2, 5], [0, 1, 2], [0, 1, 2]

=> "#<RubySparse::CSR:0x00005642596d3890; shape: [3,3]; dtype: sp_float64; nnz: 3>"

[5] pry(main)> M.each_row { |e| p e }

[3.0]

[2.0]

[5.0]

=> "#<RubySparse::CSR:0x00005642596d3890; shape: [3,3]; dtype: sp_float64; nnz: 3>"

[6] pry(main)> N = RubySparse::CSC.new [3, 3], [3, 2, 5, 4], [0, 1, 2, 1], [0, 0, 0, 2]

=> "#<RubySparse::CSC:0x000056425913a6e0; shape: [3,3]; dtype: sp_float64; nnz: 4>"

[7] pry(main)> N.each_column { |e| p e }

[3.0, 2.0, 5.0]

[]

[4.0]

=> "#<RubySparse::CSC:0x000056425913a6e0; shape: [3,3]; dtype: sp_float64; nnz: 4>"

NumRuby ViewsNumRuby Views

typedef struct NMATRIX_STRUCT

{

  nm_dtype dtype;

  size_t ndims;

  size_t count;

  size_t* shape;

  void* elements;

}nmatrix;



typedef struct NMATRIX_BUFFER_STRUCT

{

  nm_dtype dtype;

  size_t count;

  size_t ndims;

  size_t* shape;

  void* buffer_ele_start_ptr;

  nmatrix* mat;

}nmatrix_buffer;

The nmatrix_buffer  struct is used to store the data of the view of matrix. Each NMatrix view stores the pointer to the NMatrix struct of which it is a view of.
Whenever a view is created of a view then also that new view would be stored as nmatrix_buffer  and the data of that new view is created using the data from
parent view and the parent NMatrix of that parent view and the NMatrix is also made parent to the newly created view. That view any number of views can be created
from a matrix or a view of a matrix and so on.

  nmatrix_buffer* slice = ALLOC(nmatrix_buffer);

  slice->dtype = nmat->dtype;

  slice->mat = nmat;

  get_slice(nmat, lower_indices, upper_indices, slice);

  return TypedData_Wrap_Struct(NMatrix, &nm_buffer_data_type, slice);

Above code snippet is from the NMatrix accessor for when a slice is accessed using the []  method of NMatrix. For example, X[0...2, 0...3]  would return a
slice of matrix X  which is a view of the matrix with only first 2 rows and first 3 columns of the matrix.



void get_slice(nmatrix* nmat, size_t* lower, size_t* upper, nmatrix_buffer* slice){

  /*

    parse the indices to form ranges for C loops

    then use them to fill up the elements

  */

  size_t slice_count = 1, slice_ndims = 0;

  for(size_t i = 0; i < nmat->ndims; ++i){

    size_t a1 = lower[i], b1 = upper[i];

    //if range len is > 1, then inc slice_ndims by 1

    //and slice_count would be prod of all ranges len

    if(b1 - a1 > 0){

      slice_ndims++;

      slice_count *= (b1 - a1 + 1);

    }

  }

  slice->count = slice_count;

  slice->ndims = slice_ndims;

  slice->shape = ALLOC_N(size_t, slice->ndims);

  size_t slice_ind = 0;

  for(size_t i = 0; i < nmat->ndims; ++i){

    size_t dim_length = (upper[i] - lower[i] + 1);

    if(dim_length == 1)

      continue;

    slice->shape[slice_ind++] = dim_length;

  }

  VALUE* state_array = ALLOC_N(VALUE, nmat->ndims);

  for(size_t i = 0; i < nmat->ndims; ++i){

    state_array[i] = SIZET2NUM(lower[i]);

  }

  // for float64

  double* nmat_elements = (double*)nmat->elements;

  size_t start_index = get_index(nmat, state_array);  // slice first element index in elements array

  slice->buffer_ele_start_ptr = (nmat_elements + start_index);

}

The way buffer is used in slicing is that when slicing is called, instead of copying the elements into new nmatrix struct, a nmatrix_buffer  struct is created and just
the elements pointer to used to create the pointer of buffer matrix which removes the copying of elements and hence preventing a copy.

Also, nmatrix_buffer  points to the original matrix and uses the original shape to create strides which are used in conjunction with buffer elements starting pointer
to correctly access the sliced matrix elements from the original matrix elements array. This makes the sliced matrix as a view to the original matrix and one can
change the sliced matrix elements and same change can be seen in the original matrix elements.

Pull requestsPull requests

https://github.com/SciRuby/ruby-sparse/pull/11

https://github.com/SciRuby/ruby-sparse/pull/14

https://github.com/SciRuby/numruby/pull/57

Work CompletedWork Completed

Implemented DIA, CSR, CSC sparse matrix.
Elementwise operations for COO, DIA, CSR and CSC. Implemented the base C function for unary and binary operators and used implemented a few operators
like sin, cos, +, -, * , / using this base function. Other unary, binary operators can be created simply by specifying the operator mapping to C function or operator
used for it.
Dense to/from Sparse matrix conversion support for NumRuby NMatrix.
Serialization support for all 4 sparse matrix implementations.
Pretty print and inspect for all 4 sparse matrix implementations.
Iterators for sparse matrices. each  implemented for all 4 sparse implementations. each_with_indices  for COO/CSR/CSC, each_row  for CSR,
each_column  for CSC also implemented.

Inter sparse types conversion methods. Sparse conversion among COO, CSR and CSC is implemented. DIA to/from other sparse conversion doesn't have
much utility as DIA sparse has an extra constraint that only diagonal values can be non-zero, so it's not a generic sparse unlike others.

https://github.com/SciRuby/ruby-sparse/pull/11
https://github.com/SciRuby/ruby-sparse/pull/14
https://github.com/SciRuby/numruby/pull/57


View object addition to NumRuby.
View integration to slicing of N-dimensional matrix.
View integration to indexing, iteration of N-dimensional matrix.
Replaced Data_{Get, Wrap, Make}Struct with TypedData{Get, Wrap, Make}_Struct in Ruby-Sparse and NumRuby.

Future workFuture work

N-dimensional sparse matrix support.
Linear algebra and graph modules for Ruby-Sparse.
View integration to broadcasting of N-dimensional matrix.

Deliverables with statusDeliverables with status

Implementation of COO, DIA, CSR and CSC sparse matrices: Completed.
Elementwise operations (unary and binary): Core idea completed.
Dense to/from sparse matrix conversion for all 4 sparse types: Completed.
Serialization support for all 4 sparse types: Completed.
Pretty print and inspect for all 4 sparse types: Completed.
Iterators for all 4 sparse types: Completed but not all mentioned in the proposal as some of those are not logically possible, like, each_column  for CSR.
Inter sparse conversion: Completed but not for DIA as it is not a generic sparse type.
Views implementation for NumRuby: Completed.
Linear algebra support for ruby-sparse: Postponed for later.
Multiple dtypes support for ruby-sparse: Postponed for later.
triu , tril , hstack  and vstack  for sparse matrices: Postponed for later.

ConclusionConclusion

The sparse matrices are for now only implemented with just one dtype float64  and not for int , bool  etc, as simple but redundant way to do it is to use switch
statement but that isn't scalable, so I decided to use ERB code templating for it but I wasn't able to figure out a way to do that for ruby-sparse  code during the grant
period so have keep for later. RubySparse::LinAlg , triu , tril , hstack  and vstack  have been postponed to be done later.

Apart from mentioned above, the core implementation all the other major features mentioned in the proposal have been implemented. Tests are not too strong yet,
more tests will be added soon that are diverse and cover most of the possibilities.
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